Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population

نویسندگان

  • Xuecai Zhang
  • Paulino Pérez-Rodríguez
  • Juan Burgueño
  • Michael Olsen
  • Edward Buckler
  • Gary Atlin
  • Boddupalli M Prasanna
  • Mateo Vargas
  • Félix San Vicente
  • José Crossa
چکیده

Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C0) training population. A total of 1000 ear-to-row C0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1). Predictions of the genotyped individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents of C2; this was repeated for more cycles (C2, C3, and C4), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached 0.225 ton ha-1 per cycle, which is equivalent to 0.100 ton ha-1 yr-1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0), genetic diversity narrowed only slightly during the last GS cycles (C3 and C4). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations

Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low densit...

متن کامل

Efficiently tracking selection in a multiparental population: the case of earliness in wheat.

Multiparental populations are innovative tools for fine mapping large numbers of loci. Here we explored the application of a wheat Multiparent Advanced Generation Inter-Cross (MAGIC) population for QTL mapping. This population was created by 12 generations of free recombination among 60 founder lines, following modification of the mating system from strict selfing to strict outcrossing using th...

متن کامل

A Gene-Oriented Haplotype Comparison Reveals Recently Selected Genomic Regions in Temperate and Tropical Maize Germplasm

The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting...

متن کامل

Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus

The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flower...

متن کامل

Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize.

More than 80% of the 19 million ha of maize ( L.) in tropical Asia is rainfed and prone to drought. The breeding methods for improving drought tolerance (DT), including genomic selection (GS), are geared to increase the frequency of favorable alleles. Two biparental populations (CIMMYT-Asia Population 1 [CAP1] and CAP2) were generated by crossing elite Asian-adapted yellow inbreds (CML470 and V...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017